Epoxy Chocking of a Retractable Thruster in Vietnam

QuantiCast is a very versatile material, that we often use in grouting jobs big and small. In the latter category falls a chocking assignment recently carried out in Vietnam. It took place on a 88 m long Construction Service Operation Vessel (CSOV), under construction in one of Vietnam’s prime shipyards for an European owner. Once completed, the vessel will be employed in building offshore wind parks.

The vessel is equipped with two steerable thrusters (also known as Rudder/Propellers), two transverse thrusters and one retractable thruster. Particularly on the retractable thruster, perfect initial alignment is very important alignment. And not only that – the alignment must also remain accurate and stable througout the life of the vessel. For this reason, chocking retractable thrusters with epoxy resin is the norm.

Since QuantiCast was the shipyard’s epoxy resin of choice for this project, we would in this post like to briefly outline the various steps of support that we usually give to shipyards. Not only for this project, but in general whenever we are contracted to carry out equipment installation work using epoxy resin:

The CSOV under construction on the slipway
The CSOV under construction on the slipway
  1. Designing the foundation jointly with the shipyard.Finding an economic and efficient solution while closely respecting the equipment maker’s technical requirements.
  2. Deciding on the size and location of the individual chocks under consideration of the the load and the positions of the holding down and jacking bolts. See sketch below.
  3. Calculating loads and tightening torques of the holding down bolts, ensure that they comply with the specified limits imposed by the epoxy resin manufacturer and the vessel’s classification society.
  4. Creating a chocking plan, which is then submitted either by the shipyard or by us to the classification society for approval.
  5. Once the chocking plan is approved, we supply the correct quantity of epoxy resin.
  6. Pouring the foundation at site.
  7. Labaratory testing of the samples taken.

The total footprint of the 16 individual chocks supporting this retractable thruster amounts to 1.6 m2. Each chock is 35 mm high, well within the 10 – 70 mm range acceptable for the QuantiCas material. The total amount of material used is 86 litres.

Although this was a small project, it nevertheless shows the comprehensive offering and involvement that the QuantiServ epoxy resin experts are routinely providing to their customers. Read more about our epoxy resin services by following this link:

Read more

The properly aligned retractable thruster standing on jacking screws
The retractable thruster standing on jacking screws
Simplyfied chock layout sketch
Simplyfied chock layout sketch
Damming in place, prior to pouring of the epoxy resin
Temporary damming material in place, prepared for pouring the epoxy resin
Epoxy resin after curing, prior to removal of the damming material
Epoxy resin after curing, prior to removal of the damming material
Epoxy resin after curing, prior to removal of the damming material
Epoxy resin after curing, prior to removal of the damming material

Propeller Shaft Line Work on New ULCS

After we have in an earlier post looked at some recent two-stroke main engine crankshaft repair assignments that we have carried out on ships in operation, we now move the focus further towards the after end of the ship.

In this post we look at how we routinely support new building shipyards with shaft line alignment and machining work.

Read more about our recent two-stroke crankshaft work assignments

Read more

Shaft Line Work for VLCS in China: Recent Success Stories

At QuantiServ, we routinely perform essential alignment and machining work on behalf of shipyards in China on new vessels under construction. We do this for a wide range of vessels.

In this post we look at some of the very largest vessels that we work on, namely Very Large Container Ships (VLCS). These are vessels with a capacity to simultaneously carry up to 24’000 standard, 20-foot shipping containers. Typically, these ships are 400 meters long, about 62 meters wide and have a draught of about 16 meters when fully loaded.

These colossal vessels typically feature shaft lines that span between 80 to 100 meters in length, with shaft diameters ranging from 900 mm to over 1000 mm. These impressive dimensions are imperative due to the massive power of these ships’ main engines, which can reach up to 60,000 kW. This is equivalent to the power of 600 average-sized cars.1

Case 1: Stern Tube Bearing Failure Recovery

In one notable project, we assisted a shipyard and shipowner after a stern tube bearing failure on a recently delivered VLCS. While underway, the ship’s stern tube bearing suddenly overheated, reaching temperatures of well over 200 ℃, leading to the complete destruction of the bearing bush. The sudden heat increase also led to cracks in the propeller shaft.

Obviously, this critical issue required prompt action to prevent extensive downtime. Our team efficiently assisted the shipyard to replace the bearing bushes and machined the shaft in-situ to remove the cracks in its surface. Our ability to machine the shaft in-situ eliminated the need to withdraw it, which would have been a time consuming and risky operation. This approach thus not only saved valuable time and therefore minimized operational losses. It also reduced the risk of anything going wrong during the delicate propeller and shaft removal and reinstallation work and  ensured that the vessel could return to service swiftly.

After completion of our work, the shaft bearing temperature was recorded at just 32 ℃, no more than 13 ℃ Celsius above the surrounding sea water temperature, which is an excellent result!

Shaft alignment check by laser
Shaft alignment check by laser

Case 2: Construction Phase Alignment and Line-Boring

During the construction of another VLCS, our laser alignment checks revealed that the newly delivered and installed stern tube suffered from ovality and incorrect slope, posing a significant threat to the vessel’s long-term, safe performance. Once our team brought this information to the attention of the shipyard and proposed to line bore the stern tube, the shipyard, classification society and shipowner quickly agreed to our solution.

By employing precise in-situ line boring techniques, we corrected these issues, ensuring that the ship’s shaft line  will perform optimally for many years to come. This intervention during the ship’s build phase highlights our commitment to quality and foresight.

Case 3: Long-standing cooperation

QuantiServ has long been a trusted partner for shipyards worldwide. We are often involved from the early stages of new-building projects, providing technical expertise and precision machining services. For example in China we have ongoing agreements with several major shipyards, whereby we carry out laser alignment and inspection services for entire series of vessels.

During the summer of 2024, we for example completed shaft alignment services for the sixth and final delivery in a series of large, LNG-fueled ships built for a major container shipping line. All six ships are now in operation and are performing very well.

Demonstrating Expertise Across the Industry

All three cases were undertaken in China on some of the worlds’ very largest and newest ships, that will be owned and operated by three of the world’s largest container shipping lines. They involved different shipyards and different classification societies. This diverse customer base underscores the broad acceptance and trust in QuantiServ’s expertise and know-how within the maritime industry.

The three ships highlighted in this post are all either LNG-powered or are able to operate on more than one fuel. As such, they contribute to the decarbonisation of the marine industry, which is a goal that QuantiServ very much supports. Furthermore, QuantiServ is proud to contribute to the reliability and efficiency of these magnificent vessels, ensuring they meet the highest standards of operational performance and safety.

A severely damaged stern tube bearing bush
A severely damaged stern tube bearing bush
Machining the outer circumference of a stern tube bearing bush
Machining the outer circumference of a stern tube bearing bush
Stern tube line boring
Stern tube line boring
Delicate, ctitical work creates a lot of attention
Delicate, ctitical work always creates a lot of attention
Calibrating the outside diameter of the bearing bush
Calibrating the outside diameter of the bearing bush at our workshop in Shanghai
Inspection of a large stern tube bush at the shipyard
Inspection of a large stern tube bush at the shipyard

1 In 2018, the most recent year for which data are available, the average car in the European Union was fitted with an engine that was able to produce 98 kW of power.

Very Extensive Crankshaft and Block Repair on a Passenger Ferry

Overview

QuantiServ recently completed a large-scale repair assignment on a passenger ferry. The ferry was built in the year 2000 and is equipped with four 12-cylinder, 46-bore main engines, with a nominal power output of 12.6 MW each.

In early 2024, two of these engines required extensive repairs, having each accumulated over 120,000 running hours and having suffered a recent failure.

QuantiServ was contracted to carry out the repair of both engines. As additional defects were found during the repair, the work turned into a sizeable project that took almost four months to complete.

Our in-situ machining specialists from Sweden carried out all work during the winter months of 2023/2024, while the vessel was out of operation during the low season.

One of the two crankshafts was removed from the engine and underwent repair on the vessel's car deck.
One of the two crankshafts was removed from the engine and underwent repair on the vessel's car deck.

Damage

The following damages were found. They were all addressed by our specialists during the repair.

Engine Number 1

  • Crankpin bearing failure
  • As a consequence: Multiple cracks, excessive surface hardness of 600 – 680 HB

Engine Number 2

  • Failure of four crankpin bearings
  • Crankshaft bent
  • Failure of one adjacent main bearing
  •  A collapsed main bearing saddle, as a consequence of the heat generated
  • Poor fitting of another bearing saddle
  • Severe cam effect on all other crankpins
Multitude of cracks in the crankpin journal
After cutting off some material from the crankpin, a multitude of cracks became visible. They were caused by the rapid temperature raise and fall during the bearing failure.
In-process hardness measurement during machining. The areas with increased hardness are easily visible.
In-process hardness measurement during machining. The dramatic temperature changes resulted in changes in the local microstructure that are easily visible.
Surface hardness of up to 680 HB following the failure. The acceptable limit is 300 HB.
Due to excessive heat generated by the failed bearing, the surface hardness had increased to 600 - 680 HB. The acceptable upper limit is 300 HB.

Detailed Work Performed

All repair works was done while the vessel was berthed during low season.

Engine Number 1

Crankshaft Repairs:

  • Heat Treatment and Machining: One crankpin was machined to an undersize of -3.00 mm.
  • Polishing: Two main bearings were polished to ensure smooth operation.

Engine Number 2

Due to damage found on the engine block, the crankshaft was removed so that line boring on the block could be carried out. Heat treatment and in-situ machining on the crankshaft was carried out on the vessel’s car deck.

Crankshaft Repairs:

  • Heat Treatment: Four crankpins and one main journal underwent heat treatment.
  • Machining: The treated components were machined to undersize diameters ranging from -2.00 to -5.00 mm, depending on their condition.
  • Straightening: The crankshaft, found bent with a run-out of 1.50 mm, required peening (in-situ straightening).
  • Polishing: All main journals and crankpins, exhibiting strong indications of the “cam effect,” were polished.

Engine Block Repairs:

  • Bearing Saddle Realignment: The overheating of one main bearing caused misalignment, necessitating the replacement of the bearing cap and subsequent line boring.
  • Bearing Cap Adjustment: Another main bearing cap showing a gap with the cylinder block was corrected.

Additional Improvements

In addition to the primary repair tasks, QuantiServ addressed machining work previously carried out by another company on some of the crankpins. The fillets were not nicely cut, and the radius around the oil hole needed improvement. Our specialists refined these areas, ensuring optimal performance and longevity of the crankshafts.

Summary Table of Work Done

 

Engine Work done
# 1 Heat treatment and machining to -3.00 mm undersize of one crankpin
Polishing of two main bearings
# 2 Removal of the crankshaft for external heat treatment and in-situ machining
Machining to undersize diameters of -2.00 to -5.00 mm
Peening (in-situ straighening) to correct a bent crankshaft with 1.50 mm run-out
Polishing of all main journals and crankpins
Replacement of a bearing cap and line boring due to misalignment
Adjustment of a main bearing cap gap with the cylinder block
One of totally five crankpins that our specialists machined to under-size
One of totally five crankpins that our specialists machined to under-size
The mirror-like finishing on one of the crankpins.
Impressive, mirror-like finishing after polishing of the crankpins.

Conclusion

This extensive in-situ repair project on a passenger ferry highlights QuantiServ’s expertise and ability to perform critical repairs without interrupting service.

The phenomena known as “cam effect” or “ridge wear” could be identified as reason for the bearing failures and the ensuing, rather extensive and therefore costly, repairs. It is therefore very important that ship owners and operators are sensitive to this issue and regularly check the condition of the crankpins once their engines have surpassed aproximately 60,000 running hours.

Has your four-stroke engine accumulated around 60,000 running hours or more?

Although the crankpins might appear to be in good condition, it is very likely that they suffer from the cam effect (also known as ridge wear) and are in need of machine polishing. If this is not done, then you might face a failure soon!

Read more

Repair of a Single Flywheel Tooth on a Bulk Carrier in Canada

Our in-situ specialists recently completed yet another in-situ “tooth dentistry” repair. This particular repair assignment was carried out on a ten year old dry-bulk carrier in Canada. It was a small job that was quickly completed as it just involved the replacement of a single broken tooth on the flywheel of the vessel’s 50-bore main engine.

Two of our skilled in-situ specialists from the United States undertook the task. The process began with machining off the damaged tooth, which they did with the help of a portable milling machine. Following this, a prefabricated tooth, prepared in advance and grought along by our team, was accurately installed, ensuring a tight fit and seamless integration with the existing flywheel .

This successful repair underscores QuantiServ’s ability to provide efficient and reliable in-situ solutions, big and small.

View of the single broken tooth
The completed repair
The completed repair
Removal of the damaged tooth by in-situ milling
Removal of the damaged tooth by in-situ milling
Engine ready to be started up again
The engine is ready to be started up again

Links

Read more about our flywheel repairs – from changing just a few teeth to replacing them all!

Restoring All 90 Teeth on a large Flywheel

Our colleagues from QuantiServ China successfully restored all teeth on a flywheel

View more

Flywheel In-situ Repair on the US East Coast

Another successful flywheel repair assignment completed, in Florida, USA

View more

Flywheel Teeth Dentistry in Hong Kong

In-situ repair of a large 96-bore engine flywheel at Hong Kong anchorage

View more

In-situ Flywheel Repair in Mombasa, Kenya

In-situ Flywheel Repair on a 3’400 TEU Container Vessel in Mombasa, Kenya

View more

Customer Feedback: “Good Quality, Reasonable Cost, Finish on Time”

Excerpt from an email from the attending Superintendent of the customer to his office, after completion of the work:

"Reasonable costs, where no any additional surcharges were implemented after repair completion / Invoiced amount is corresponding to offer / Not too big amount compared with other vendors, who suggest this type of repair service / Works complete in time (as per the offer) / Good job quality"

Project Overview

QuantiServ recently undertook a challenging and comprehensive repair project on a 46-bore main engine installed on a 12,000 DWT container vessel. The ten-year-old vessel had sustained significant damage to both the crankshaft and engine block. Our team of three highly skilled specialists carried out the repair work in the Caribbean, ensuring the engine was restored to optimal condition and performance.

The entire repair took eight weeks, from start to finish.

Inspection and Proposal

Upon arrival, our team conducted a thorough inspection of the damaged engine components. The inspection revealed extensive damage, necessitating a detailed and precise repair plan. We promptly submitted a comprehensive repair proposal to the vessel’s owner and the classification society. Once the proposal received approval, we commenced the repair work, which included several critical tasks to address the damage.

Whenever we face larger damages, we usually use a 3D scanner to scan the components to be repaired. The highly detailed and accurate geometrical data thus acquired offers numerous advantages. Not only does it accelerate the repair process because it eliminates time consuming manual measurements, it also helps to create very detailed and precise repair castings.

Simulation to show how the repair inserts will fit together
Simulation to show how the repair inserts will fit together

Engine Block Repair

Damage Sustained:
  • Crankcase door damage on both starboard (SB) and port side (PS)
  • Cam floors damaged on both sides
  • Various additional cracks in the crankcase

Our metal stitching repairs are permanent repairs. So much so that we grant up to 5 years of warranty on them.

Read more

Repair Details:
  • Total length of cracks/junctions stitched: approximately 6 meters
  • Number of stitching pins installed: Approximately 1’000 pieces
  • Number of tailor-made repair inserts installed: 8 (with the larger inserts casted in a classification-approved foundry and shipped to the vessel prior to commencement of the on-site repair)
  • Pre-fabricated sleeve installed in the lower cylinder liner guide
  • In-situ line boring and installation of sleeves in two camshaft pockets that were found out of line due to the accident

Our specialists meticulously stitched the cracks and installed the necessary inserts, ensuring the structural integrity of the engine block was fully restored. The use of about 1’000 Castmaster C3 stitching pins and eight custom-cast inserts highlights the extent and complexity required for this repair.

Damage around the crankcase door
Damage around the crankcase door
Dressing up one of the repair inserts
Dressing up one of the repair inserts
One of the repair inserts
Visual simulation how one of the repair inserts is to be fitted into the block
Removal of cracked and deformed material
Removal of cracked and deformed material
Stitching-in one of the repair inserts (left)
Stitching-in one of the repair inserts (left)
Metal stitching is physically very demanding and is often performed in tight spaces
Metal stitching is physically very demanding and is often performed in tight spaces
Preparing the engine block to receive repair inserts
Preparing the engine block to receive repair inserts
During stitching in place one of the smaller repair inserts
During stitching in place one of the smaller repair inserts
The completed repair
The almost completed repair, prior to drilling of some minor holes and painting

Crankshaft Repair

Damage Sustained:
  • Extensive mechanical damage to one crank pin
  • Connecting rod, big end bearing housing thrown out of the engine block
  • Both counter weights thrown out of the engine block, studs sheared off
  • Deep indents in the crankpin surface
  • Long cracks, easily visible by naked eye
Badly damaged crankpin
Badly damaged crankpin and crankwebs
Extensive impact marks
Extensive impact marks on the crankpin
Repair Details:
  • Damaged crankpin machined to undersize
  • Landing surfaces of counterweights milled
  • Counterweight fastening bolt stubs removed

The crankshaft repair involved machining one crankpin to an undersize diameter and installing a pre-fabricated sleeve in the lower liner guide. These steps were crucial in restoring the crankshaft’s functionality and ensuring the engine’s smooth operation.

Blueing check of the completed crank pin
Blueing check of the completed crank pin
Counterweight landing surface restored
Counterweight landing surface restored
Installation of new studs, after removal of the broken stubs.
Installation of new studs, after removal of the broken stubs

Customer Feedback

The customer expressed immense satisfaction with the repair results. The attending superintendent conveyed his positive feedback to his management, highlighting the professionalism and expertise demonstrated by the QuantiServ team. He recommended QuantiServ for future repairs on the company’s vessels, underscoring the trust and confidence our services have earned.

At QuantiServ, we pride ourselves on delivering high-quality, reliable repair services that meet and exceed our customers’ expectations. This project is a testament to our commitment to excellence, precision, and customer satisfaction. We look forward to continuing to provide top-tier repair solutions for the maritime industry.

Follow these links for more information about our in-situ and metal stitching services.

Five In-Situ Machining Jobs on Large Two-Stroke Engines in Three Months

At QuantiServ, we are dedicated to providing exceptional in-situ machining services to the maritime industry.

Over the past three months, our team has successfully completed five significant crankpin machining assignments on large two-stroke marine main engines. These projects, carried out on four different engine types built by the two market-leading OEMs, highlight our versatility and expertise.

Project Highlights

  • North America: We performed extensive crankpin machining on a container vessel, ensuring the engine’s optimal performance and reliability. Almost simultenously, we also worked on a bulk carrier, deliverig high-quality crankshaft machining services that meet the stringent standards of the maritime industry.
  • The Caribbean: Our team tackled a challenging crankpin machining job on an oil tanker, restoring the crankshaft to its full operational capacity in less than two weeks.
  • North Asia: On a Ro-Ro ship, we executed a complex crankpin machining task, demonstrating our ability to handle diverse vessel types with ease.
  • South East Asia: Another successful project involved a gas tanker, where our team ensured the engine’s reliability and efficiency through crankpin machining and other repair works.
One of the crankpins undergoing repair
One of the crankpins undergoing repair

In all these cases, we worked on crankpins from Ø 600 to 900 mm and machined off anywhere from 4 mm to 10 mm, due to excessive hardness and cracks following a bearing failure. Typically the repair work involves machining and then machine polishing of the cylindrical crankpin surface and of the fillets1. On some of these vessels our specialists worked in a single-shift modus, while on others they worked around the clock in two shifts. It always depends on the customer’s wishes and on her operational requirements.

*The fillets are the radial undercuts at the transition of the crankpin to the crank web.

One of the crankpins prior to repair
One of the crankpins prior to repair
After machining and polishing
The same crankpin after machining and polishing

Comprehensive Services

In addition to the crankpin machining work, we also provided a range of related services, including:

  • Planning: Remotely assisting the customer to find the best repair solution  and to make arrangements before the vessel even reaches the location where the repair is to be carried out.
  • Sourcing of Under-Size Bearings: : Ensuring the availability of tailor-made bearings, with short lead time. Under-size bearings have a thicker white metal layer and are usually not available off-the-shelf. They have to be produced on a case-by-case basis. Some of these bearings we produce in-house, others we source from specialized manufacturers.
  • Reconditioning of Engine Components: Extending the life and performance of critical engine parts in one of our four reconditioning centres.
  • Other Repair Works: Addressing various repair needs not related to the crankshaft, ensuring comprehensive engine maintenance.

Commitment to Excellence

Each of these projects underscores our dedication to providing reliable and efficient in-situ machining services. Our ability to mobilize almost instanteneously and to perform these tasks on-site in a 24/7 manner, saves our clients valuable time and limits loss of income. Whether it’s a container vessel, tanker, Ro-Ro ship, bulk carrier, or gas tanker, QuantiServ is equipped to handle the unique challenges of each job with precision and professionalism.

We look forward to continuing our tradition of excellence and supporting the maritime industry with our specialized in-situ machining services.

Crankpin machining whereby the cutting tool moves in a continous orbital path around the crankpin, resulting in uniform material removal
Crankpin machining whereby the cutting tool moves in a continous orbital path around the crankpin, resulting in uniform material removal
Blueing test to verify that the bearing shell makes full and even contact with the crank pin.
Final blueing test to verify that no high spots are present and that the bearing shell makes full and even contact with the crankpin

Note: All photos in this post originate from the five projects, they are not depicting the same project.

Webinar from the Swedish Club: Dealing with Crankshaft Damage

According to statistics compiled by the Swedish Club, crankshaft damage is the most expensive class of engine damage, with an average claim cost of 1.2 million USD.

In a webinar held on 26 October 2022, a panel of experts from the Swedish Club and from QuantiServ explored the common causes and types of damage to internal combustion engine crankshafts. They also explored different repair options and what can be done to prevent damages from occurring in the first place.

Panelists:

  • Henrik Karle, Technical Manager, The Swedish Club
  • Peter Stålberg, Senior Technical Advisor, The Swedish Club
  • Johannes Roberts, Manager, QuantiServ Sweden
This webinar was brought to you by The Swedish Club in collaboration with QuantiServ Sweden. It was broadcasted live via zoom on 26 October 2022.
Special thanks to the Swedish Club for making it possible. Previous webinars from the Club’s Loss Prevention series can be found here.

Large Reconditioning Order in China Successfully Completed

Our colleagues working at our reconditioning centre in Suzhou, China, have completed what most likely will be their single largest order of the year 2022.

The work came from an european-owned, 6600 TEU boxship docked in a shipyard in Zhoushan, China. Many components of the 19-year-old, 12 cylinder, 96 cm bore main engine were in need of reconditioning and/or overhauling. Of course our colleagues in Suzhou were more than happy to comply.

The components arrived at our workshop on 30 July 2022 and were returned to the vessel in two batches, on 28 August 2022 and 01 September 2022 respectively. Thus, the work took just took 32 days, from start to finish.

During this time, we reconditioned the following components:

  • 15 pistons: Full reconditioning including coating of the piston ring grooves with the QS50K material
  • 13 piston rods: Reconditioning of the running surface, skimming of the landing surfaces
  • 9 piston skirts: Renewal of the rubbing bandages and skimming of the landing surfaces
  • 12 stuffing boxes:  Overhaul and modification of the housings (upgrade)

The work included dismantling, reassembling and pressure testing where required

This case neatly demonstrates that our reconditioning centres have sufficiently many skilled workers and machining capacity at their disposal to handle even the largest reconditioning orders with ease.

Piston assembly
Assembly of the stuffing boxes
Robotic welding of pistons
Robotic welding of pistons
Piston rod reassembling
Piston rod reassembling
Six of the piston assemblies ready for delivery

Inspection of two 70 Year Old Marine Engines in Switzerland

One of our most-seasoned engineers recently had the rare opportunity to carry out an inspection and condition assessment on two 70-year old main engines installed on an inland cargo vessel in Switzerland. During its long history, the ship changed ownership two or three times and now belongs to one of Switzerland’s prime construction companies and is used to transport construction gravel to a cement plant, where the gravel gets recycled.

The vessel was originally built in 1948/49 in a shipyard in The Netherlands as an inland cargo vessel. She is a twin-screw design.

When she was built, she had a displacement of 1’246 metric tons, an overall length of 83 meters, a beam of 9 meters and a draught of 2.6 meters. In 1969/1970, she was converted to a self-unloading gravel carrier. Her length was extended by 8 meters, resulting in a new tonnage of 1’447 metric tons.

The two main engines were build by Sulzer Brothers in Winterthur, Switzerland, in 1948 and are connected to the propeller shafts through reversible gearboxes. The engines are of the two-stroke, trunk-piston type and have the following specification:

  • Engine Type: Sulzer 6TW24
  • Bore: 240 mm
  • Rated Speed: 400 rpm
  • Rated Output: 450 hp each

As can be seen in the cross-sectional view on the right, the engines are equipped with piston-type scavenge pumps, which explains the for the time considerable power output of 450 horse power per engine, or 900 horse power (671 kW) in total.

Our engineer spent a few days on board, compiled an extensive report and after the visit continued to support the customer, for example to identify spare parts.

Because we have a soft spot for antique marine installations, we carried out this assignment and the subsequent customer support activities pro-bono.

An early picture of the vessel on the Rhine river
An early picture of the vessel on the Rhine river
One of the two main engines, photo taken in 2020
One of the two main engines, photo taken in 2020
Top view of the engine room, photo taken in 2020
Top view of the engine room, photo taken in 2020

Photo credits:

  • www.commons.wikimedia.org/w/index.php?curid=59313086
  • www.swiss-ships.ch
  • QuantiServ own