Line Boring of a Locomotive’s Diesel Engine Block

Our in-situ machining specialists recently carried out line boring of the main bearing pockets on a 20-cylinder, two-stroke engine. The engine is installed in an American-built diesel-electric locomotive and operates in Scandinavia.

Line boring became necessary due to the seizure of three main bearings. We performed the repair work in our workshop in Gothenburg, Sweden.

We routinely carry out line boring on all kinds of diesel and gas engines, mostly on main bearing and camshaft bearing pockets, or to install sleeves to stop water leaking along the cylinder liners into the oil sump.

This particular job stands out due to the innovative design of the engine. And not only is the design innovative, it was very successful too. Between 1965 and 1983, almost 29’000 such engines were built!

Engine particulars:

  • 20-cylinder V-engine
  • 2’900 kW (3’950 hp) output
  • 230 mm bore, 250 mm stroke
  • 900 – 950 rpm nominal speed
Line boring of the main bearing pockets
Line boring of the main bearing pockets

Innovative engine design

In a nutshell: This engine is very compact, very powerful and it runs at a rather high speed for this size of engine: 900 – 950 rpm. This results in a rather remarkable maximum piston speed of just over 12 m/S at mid-stroke1. Because of its high power and compact packaging, this engine has a high power to weight ratio. This is achieved through innovative design features that are worth looking at. Here we look at three of them.

1) 45 degree angle between A- and B-bank

V-engines are a common configuration for internal combustion engines. In a V-engine, the cylinders are arranged in two banks, which form a “V” shape when viewed from the front of the engine. The angle between these two banks is known as the “V-angle” and can vary significantly between different engines.

Most V-engines have a V-angle of 90 degrees. However, this engine type uses a V-angle of only 45 degrees. This design choice can have several implications for the engine’s performance and characteristics.

A 45-degree V-angle results in a more compact engine design compared to a 90-degree V-angle. This can be particularly beneficial in applications where space comes at a premium, such as in high-performance sports cars, in motorcycles or, you guessed it, in railway locomotives.

However, a smaller V-angle can also result in increased mechanical stress and vibration, as the forces generated by the pistons are not evenly distributed across the engine block. This can lead to increased wear and tear on the engine components, and may require additional mechanisms to counteract the imbalance.

In terms of performance, a 45-degree V-angle can potentially offer improved balance and smoother operation compared to a 90-degree V-angle. This is because the smaller angle allows for better primary balance and reduces vibrations.

In conclusion, while a 45-degree V-angle can offer some advantages in terms of compactness and potentially smoother operation, it also presents challenges in terms of increased mechanical stress and complexity of manufacture. As with any engineering decision, the choice between a 45-degree and 90-degree V-angle will depend on the specific requirements of the application.

2) Non-offset V-engine block

Some V-engine blocks have cylinders that are not offset (when viewed from above), meaning that the cylinders of both banks are exactly aligned. This design is known as a non-offset V-engine block. One advantage of this design is that it results in a more compact engine, as the cylinders are arranged in a more space-efficient manner.

However, there are also some disadvantages to this design. One potential issue is that it can result in increased mechanical stress and vibration, as the forces generated by the pistons are not evenly distributed across the engine block. This can lead to increased wear and tear on the engine components, and may require additional mechanisms to counteract the imbalance.

Overall, the choice between an offset and non-offset V-engine block will depend on the specific requirements of the application. While a non-offset design can offer some advantages in terms of compactness, it may also have some drawbacks in terms of increased mechanical stress and vibration. It is important for engineers to carefully consider these trade-offs when designing an engine.

3) “Blade and fork” connecting rods

The blade and fork type connecting rod arrangement is a unique way of joining two pistons to a single crankpin. In each pair of engine cylinders, a “fork” rod is divided into two parts at the big end and a “blade” rod is tapered from the opposing cylinder to fit this gap in the fork. This type of connecting rod has long found application on for example V-twin motorcycle engines (by BSA and Harley Davidson, among others) and V12 aircraft engines. The most famous example of a “blade and fork” engine is probably the Rolls Royce Merlin aircraft engine. Close to 200’000 such engines were built over many years. They were installed in many very famous aircrafts, such as the North American P51 Mustang, the Supermarine Spitfire, the Avro Lancaster and the Hawker Hurricane.

The advantage of this arrangement is that it allows both cylinders and rods to be in the same plane, as is required by an non-offset engine block. It also makes the motions of the two pistons identical. In the aircraft world, there were additional reasons for using fork-and-blade rods, rooted in history. Both Allison and Rolls-Royce produced V-12 engines which used knife-and-fork rods.

However, there are also some disadvantages to this arrangement. The underlying physics and manufacturing practice supporting plain journal bearings have improved to the point that big-end bearings no longer require the support of a full-width bearing. This means that side-by-side con-rods can now be used instead of fork-and-blade rods, which are more complex to manufacture.

Overall, the blade and fork type connecting rod arrangement has its advantages in terms of simplifying design and making piston motions identical, but it is more complex to manufacture than side-by-side con-rods. With advances in bearing technology, side-by-side con-rods have become a viable alternative. However, the choice between the two arrangements ultimately depends on the specific requirements of the engine design.

Work performed

The work that we carried out to get this 20-cylinder engine block back into good working condition consisted, broadly, of the following tasks:

  • Laser alignment and dimensional check
  • Hardness check and Magnetic Particle Inspection (MPI) to search for cracks
  • Line boring of the 12 main bearing pockets to remove existing fretting corrosion. We machined all main bearing bores to nominal dimension.
  • Blue fitting of the bearing caps

Read more about line boring

1This is an approximation calculated according to the formula PSmax = 250 x π x 950, where 250 is the piston stroke in millimeters and 950 is the engine speed in revolutions per minute

20-cylinder engine block at workshop
The 20-cylinder, welded engine block in our workshop. Note that the gear train is centrally located.
The block turned on its side with main bearing caps removed.
The block turned on its side, main bearing caps removed
Blueing test of the main bearing cap serration
Blueing test of the main bearing cap serration

Metal Stitching and Line Boring on a Japanese Auxiliary Engine Block

In late 2021, a Greek owner of a 4250 TEU container vessel approached us for the repair of an auxiliary engine. The 26-bore, japanese-made engine had suffered from a so-called “side kick” – the connecting rod had smashed a hole in the engine block, above cylinder #2.

As the vessel was about to call Singapore, QuantiServ Singapore arranged for one of its metal stitching specialists to go on board to conduct a comprehensive damage assessment.

As is nowadays almost always the case, our specialist deemed the engine block damage to be repairable. We engineered a repair proposal, consisting of metal stitching and in-situ machining to be carried out in our workshop in Singapore. The customer gladly accepted our repair proposal due to the obvious time and cost savings compared to replacing the engine block. He made arrangements for the 12-year old engine block to be sent to our Singapore workshop for repair.

The block arrived at our workshop in March 2022 and was immediately attended to. The repair work carried out included the following main steps:

  • We arranged for a tailor-made cast iron repair patch to be cast in a certified partner foundry. The repair patch was then stitched in place using Castmaster™ stitching pins and matching locks. This provides for a permanent, very strong repair.
  • As the damage extended into the lower cylinder liner bore, a repair sleeve was installed there. The repair sleeve guarantees a good fit with the cylinder liner o-rings, preventing water leaks.
  • The ovality of seven out of nine main bearing pockets was found to be excessive. This finding was independent of the accident but needed attention too. We corrected the ovality with in-situ line boring.
  • All eight cylinder liner landing surfaces in the engine block were machined to clear them from corrosion and cavitation damage.

A Magnetic Particle Inspection (MPI) was carried out on the completed repair to the satisfaction of the customer and attending class surveyor.

From start to finish, the repair work took approximately four weeks to complete, well in time for the engine block to be sent back to the vessel during her next routine call to Singapore.

Engine block damage at cylinder number 2
Damaged engine block
Installation of stitching pins
Installation of stitching pins
Machining of the cylinder liner landing surface
Machining of the cylinder liner landing surface
Engine block debris
Engine block debris
Repair patch installed
Repair patch installed
Cylinder liner landing surface after machining
Cylinder liner landing surface after machining
Newly casted repair patch
Newly casted repair patch
MPI inspection after stitching
MPI inspection after stitching
Another job well done
After completion. Another repair job well done!

Two-stroke Bedplate Line Boring in Mexico

When a six year old bulk carrier suffered main bearing failures on its Japanese-made main engine, QuantiServ was called in for an initial inspection and for discussions on how to arrange the repair in the fastest and most economical way. The inspection in Veracruz, Mexico, showed that main bearings # 7 and 8 failed and that the crankshaft as well as the main bearing pockets were damaged.

The crankshaft was beyond repair and had to be replaced by a new one. The bed plate, on the other hand, could be recovered by line boring. With the engine frame lifted up, QuantiServ’s in-situ specialists carried out

  • a thorough inspection of the bedplate, including NDT crack detection and hardness measurements
  • laser alignment checks before line boring
  • line boring of main bearing pockets # 7 and 8
  • laser alignment checks after line boring
  • blueing checks

The work was carried out successfully while the vessel was alongside in the shipyard in Mexico.