Propeller Shaft Line Work on New ULCS

After we have in an earlier post looked at some recent two-stroke main engine crankshaft repair assignments that we have carried out on ships in operation, we now move the focus further towards the after end of the ship.

In this post we look at how we routinely support new building shipyards with shaft line alignment and machining work.

Read more about our recent two-stroke crankshaft work assignments

Read more

Shaft Line Work for VLCS in China: Recent Success Stories

At QuantiServ, we routinely perform essential alignment and machining work on behalf of shipyards in China on new vessels under construction. We do this for a wide range of vessels.

In this post we look at some of the very largest vessels that we work on, namely Very Large Container Ships (VLCS). These are vessels with a capacity to simultaneously carry up to 24’000 standard, 20-foot shipping containers. Typically, these ships are 400 meters long, about 62 meters wide and have a draught of about 16 meters when fully loaded.

These colossal vessels typically feature shaft lines that span between 80 to 100 meters in length, with shaft diameters ranging from 900 mm to over 1000 mm. These impressive dimensions are imperative due to the massive power of these ships’ main engines, which can reach up to 60,000 kW. This is equivalent to the power of 600 average-sized cars.1

Case 1: Stern Tube Bearing Failure Recovery

In one notable project, we assisted a shipyard and shipowner after a stern tube bearing failure on a recently delivered VLCS. While underway, the ship’s stern tube bearing suddenly overheated, reaching temperatures of well over 200 ℃, leading to the complete destruction of the bearing bush. The sudden heat increase also led to cracks in the propeller shaft.

Obviously, this critical issue required prompt action to prevent extensive downtime. Our team efficiently assisted the shipyard to replace the bearing bushes and machined the shaft in-situ to remove the cracks in its surface. Our ability to machine the shaft in-situ eliminated the need to withdraw it, which would have been a time consuming and risky operation. This approach thus not only saved valuable time and therefore minimized operational losses. It also reduced the risk of anything going wrong during the delicate propeller and shaft removal and reinstallation work and  ensured that the vessel could return to service swiftly.

After completion of our work, the shaft bearing temperature was recorded at just 32 ℃, no more than 13 ℃ Celsius above the surrounding sea water temperature, which is an excellent result!

Shaft alignment check by laser
Shaft alignment check by laser

Case 2: Construction Phase Alignment and Line-Boring

During the construction of another VLCS, our laser alignment checks revealed that the newly delivered and installed stern tube suffered from ovality and incorrect slope, posing a significant threat to the vessel’s long-term, safe performance. Once our team brought this information to the attention of the shipyard and proposed to line bore the stern tube, the shipyard, classification society and shipowner quickly agreed to our solution.

By employing precise in-situ line boring techniques, we corrected these issues, ensuring that the ship’s shaft line  will perform optimally for many years to come. This intervention during the ship’s build phase highlights our commitment to quality and foresight.

Case 3: Long-standing cooperation

QuantiServ has long been a trusted partner for shipyards worldwide. We are often involved from the early stages of new-building projects, providing technical expertise and precision machining services. For example in China we have ongoing agreements with several major shipyards, whereby we carry out laser alignment and inspection services for entire series of vessels.

During the summer of 2024, we for example completed shaft alignment services for the sixth and final delivery in a series of large, LNG-fueled ships built for a major container shipping line. All six ships are now in operation and are performing very well.

Demonstrating Expertise Across the Industry

All three cases were undertaken in China on some of the worlds’ very largest and newest ships, that will be owned and operated by three of the world’s largest container shipping lines. They involved different shipyards and different classification societies. This diverse customer base underscores the broad acceptance and trust in QuantiServ’s expertise and know-how within the maritime industry.

The three ships highlighted in this post are all either LNG-powered or are able to operate on more than one fuel. As such, they contribute to the decarbonisation of the marine industry, which is a goal that QuantiServ very much supports. Furthermore, QuantiServ is proud to contribute to the reliability and efficiency of these magnificent vessels, ensuring they meet the highest standards of operational performance and safety.

A severely damaged stern tube bearing bush
A severely damaged stern tube bearing bush
Machining the outer circumference of a stern tube bearing bush
Machining the outer circumference of a stern tube bearing bush
Stern tube line boring
Stern tube line boring
Delicate, ctitical work creates a lot of attention
Delicate, ctitical work always creates a lot of attention
Calibrating the outside diameter of the bearing bush
Calibrating the outside diameter of the bearing bush at our workshop in Shanghai
Inspection of a large stern tube bush at the shipyard
Inspection of a large stern tube bush at the shipyard

1 In 2018, the most recent year for which data are available, the average car in the European Union was fitted with an engine that was able to produce 98 kW of power.

QS50K Pistons Produced: 500 / Quality Claims: 0

We are thrilled to announce a significant milestone at our Suzhou, China Reconditioning Centre:

The production of our 500th QS50K piston!

This achievement underscores our commitment to excellence and innovation in the field of piston reconditioning. Our dedication to quality is reflected in our impeccable track record — there have been no warranty or performance claims at all to date. This speaks volumes about the superior quality and reliability of our reconditioned pistons.

24,000 Hour Ring Groove Life Time.

Guaranteed!

The quality of our QS50K coated ring grooves is so good that we now offer a 24,000 hour* warranty on fully reconditioned, QS50K coated two-stroke pistons!

Contact us for details

*pro-rata, 24,000 running hours or three years after delivery, whichever comes first

QuantiServ operates four Reconditioning Centres. They are located in Kruiningen (Netherlands), Dubai (UAE), Suzhou (China) and in Singapore. At all four, we offer two convenient options for our customers:

  1. Exchange Service: We send you a newly reconditioned QS50K piston, whereafter you return your worn one to us.
  2. Reconditioning Service: We recondition your existing piston, put on the QS50K coating and return it back to you.

Between them, our four Reconditioning Centres have so far produced about 2’000 QS50K pistons. We thank our existing customers for their continued support and look forward to serving new ones too!

The 500th QS50K piston made in Suzhou before its delivery to a large, French container line
The 500th QS50K piston made in Suzhou before its delivery to a large, French container line

“Manufactured Again”-Certification Renewed

Our reconditioning centres in Dubai, Kruiningen, Singapore and Suzhou have been Manufactured Again certified since 2018. This prestigious mark represents the quality, value, and sustainability of our reconditioning (remanufacturing) processes and has just been renewed for another year.

Let’s delve into how this renewal benefits both our customers and our commitment to sustainability:

  1. Quality Assurance: The Manufactured Again Certification ensures that our reconditioned products meet rigorous quality standards. By adhering to stringent processes and standards, we guarantee consistent excellence in our reconditioned goods.
  2. Value Proposition: Reconditioned products offer exceptional value. They combine like-new quality with reduced production costs, resulting in better prices for our customers. By choosing our certified products, customers make an economically savvy choice without compromising on quality.
  3. Environmental Impact: Sustainability lies at the heart of our journey. Reconditioning conserves embodied energy and reduces waste. For instance, reconditioning one large piston consumes about six times less resources than producing a new one! Our commitment to reconditioning and sustainability aligns with global efforts to reduce environmental impact.
  4. Customer-Centric Approach: By holding the Manufactured Again Certification, we demonstrate our dedication to customer satisfaction. Customers can trust that our reconditioned components are not only eco-friendly but also reliable and high-performing.

In summary, our renewed certification reinforces QuantiServ’s position as a responsible service provider, creating value for customers while simultaneously advancing our sustainability goals. Together, we’re driving positive change — one reconditioned component at a time.

Restoring All 90 Teeth on a Two-Stroke Engine Flywheel

Being well known for our repair capabilities, we repair damaged two- and four-stroke engine flywheels frequently. In most cases, a few of the flywheel’s teeth are damaged and we quickly restore these by installing a tailor-made repair insert. We usually do this in-situ, either during a port stay or during a docking.

The situation found on an European-owned 2’300 TEU box ship in September 2022 was very different. When the customer contacted us about a damage to the flywheel, we sent our colleagues from QuantiServ Singapore on board for an inspection.

Badly damaged flywheel

During the inspection it very quickly became clear that this was no ordinary case, as all ninety teeth were found severely damaged. An in-situ repair of 90 teeth would take too long and would not be cost-efficient either. As the ship was about to be docked very soon, we suggested to the customer to carry out the repair during the upcoming docking in southern China.

The colleagues from QuantiServ China took over the case. They worked out a very attractive proposal that was immediately accepted by the customer. Our engineers and technicians then started all preparation and planning.

Once the vessel was in the yard, the yard workers uncoupled the intermediate shaft, took the 3.5 ton flywheel off the engine and moved it out of the engine room through a narrow slot that they had cut into the vessel’s hull. The flywheel was then trucked to Shanghai, where the highly-skilled engineers and technicians from QuantiServ China immediately commenced to machine it.

They machined off its toothed rim and then shrunk on a tailor-made ring of forged steel onto the ø 3.2 meter flywheel. And to make sure that the ring stays put for the lifetime of the ship, they also installed a total of 135 large bolts. Once this was completed, new teeth were milled.

Milling new teeth obviously took time, owing to the large size of the flywheel. In fact it took five days and five nights of continuous milling!

After completing a few more processing steps, our Shanghai colleagues sent the flywheel back to the shipyard and to a very happy customer. The shipyard workers then completed this repair assignment, by reinstalling the flywheel to the 72-bore engine and by re-coupling it to the ship’s intermediate shaft.

Severely damaged flywheel prior to repair
Severely damaged flywheel prior to repair
Milling of new teeth
Milling of new teeth
Ready to be delivered back to the shipyard
Ready to be delivered back to the shipyard
Machining on a large vertical lathe
Machining on a large vertical lathe
The newly milled teeth
The newly milled teeth
During re-installation on board
During re-installation on board

Links

The repair of every single tooth on a flywheel as presented above is not something that we do every day. Typically, just a handful of consecutive teeth are damaged. Follow one of the links below to see how we repair these cases in-situ.

Flywheel In-situ Repair on the US East Coast

Another successful flywheel repair assignment completed, in Florida, USA

View more

Flywheel Teeth Dentistry in Hong Kong

In-situ repair of a large 96-bore engine flywheel at Hong Kong anchorage

View more

In-situ Flywheel Repair in Mombasa, Kenya

In-situ Flywheel Repair on a 3’400 TEU Container Vessel in Mombasa, Kenya

View more

Large Reconditioning Order in China Successfully Completed

Our colleagues working at our reconditioning centre in Suzhou, China, have completed what most likely will be their single largest order of the year 2022.

The work came from an european-owned, 6600 TEU boxship docked in a shipyard in Zhoushan, China. Many components of the 19-year-old, 12 cylinder, 96 cm bore main engine were in need of reconditioning and/or overhauling. Of course our colleagues in Suzhou were more than happy to comply.

The components arrived at our workshop on 30 July 2022 and were returned to the vessel in two batches, on 28 August 2022 and 01 September 2022 respectively. Thus, the work took just took 32 days, from start to finish.

During this time, we reconditioned the following components:

  • 15 pistons: Full reconditioning including coating of the piston ring grooves with the QS50K material
  • 13 piston rods: Reconditioning of the running surface, skimming of the landing surfaces
  • 9 piston skirts: Renewal of the rubbing bandages and skimming of the landing surfaces
  • 12 stuffing boxes:  Overhaul and modification of the housings (upgrade)

The work included dismantling, reassembling and pressure testing where required

This case neatly demonstrates that our reconditioning centres have sufficiently many skilled workers and machining capacity at their disposal to handle even the largest reconditioning orders with ease.

Piston assembly
Assembly of the stuffing boxes
Robotic welding of pistons
Robotic welding of pistons
Piston rod reassembling
Piston rod reassembling
Six of the piston assemblies ready for delivery

More Than 1’000 QS50K Pistons Delivered – And Counting!

In 2019, following an extensive research and testing period, we have introduced the first QS50K pistons into the market. It was the beginning of a lasting success story: Ever since, we have produced and delivered more than 1’000 pieces, to many different customers.

These pistons are now installed all around the world, in ocean going vessels and in power plants. They are performing extremely well and achieve time between overhauls (TBO) that hitherto were unthinkable. The earliest QS50K pistons have accumulated well over 30’000 running hours and are still in service!

Rebuilding the piston ring grooves
Rebuilding the piston ring grooves

Benefits of the QS50K technology

With the introduction of the QS50K coating technology, QuantiServ has redefined the piston reconditioning process. This proprietary technology was developed by QuantiServ and offers the following important advantages:

    • Extremely durable, wear resistant coating, resulting in very long life-time / time between overhauls (TBO)
    • Fully automated process carried out by a robot, resulting in a top-quality product due to the robot’s very high accuracy, repeatability and consistency.
    • Faster than chromium plating, therefore shorter turnaround times
    • Less heat input into the piston, eliminating any residual stresses that over time could develop into cracks
    • Environmentally sound, non-toxic process

Availability

We offer the QS50K technology for any engine brand and for any cylinder bore above ø 48 cm. The QS50K pistons that we have delivered so far covered the bore range, from ø 48 cm to ø 98 cm. They were destined for engines manufactured by the big three OEMs, in an approximately 45%/45%/10% ratio.

At this moment, our recon centres in Kruiningen (The Netherlands) and Suzhou (China) are equipped with the required machinery to offer this product. Our large recon centre in Singapore will follow very soon.

24’000 Hour Ring Groove Life Time. Guaranteed!

The quality of our QS50K coated ring grooves is so good that we now offer a 24,000 hour* warranty on fully reconditioned, QS50K coated two-stroke pistons!

Contact us for details

*pro-rata, 24,000 running hours or three years after delivery, whichever comes first

To give maximum flexibility to our customers, we offer three different ways of working to chose from:

  1. Reconditioning on exchange. The customer gets a newly reconditioned component delivered from one of our four reconditioning centres. Once he has installed the component into his engine, he returns his old part to us.
  2. Reconditioning of the customer’s own part. The customer sends the component to be reconditioned to a QuantiServ reconditioning centre, where it undergoes professional reconditioning after which it is returned to the customer.
  3. Straight sale. The customer purchases a reconditioned piston from us, without returning an old one.

We can apply the QS50K coating to pistons that are undergoing full or partial reconditioning.

Full reconditioning

The entire top surface and ring groove area is first machined off and then rebuilt by robotic MIG or SAW welding. Thereafter, the piston undergoes final machining before the QS50K coating is applied to the ring grooves. The last step is grinding of the ring grooves, which completes the full reconditioning process.

If it is requested by the customer, then we can coat the top of the piston by a protective layer of Inconel. This can be a good solution for engines that suffer from excessive hot corrosion at the piston top.

Partial reconditioning

If only the ring grooves are worn and if a piston is in otherwise good condition, then partial reconditioning is possible. A precondition is, however, that none of the ring grooves has worn so much that not only the chromium layer but the steel substrate itself has worn. In this case, partial reconditioning is not possible and full reconditioning is the only remedy.

During partial reconditioning, any remaining chromium is removed before the QS50K layer is applied to the ring grooves. All mating surfaces will be skimmed, to remove any signs of fretting corrosion and if there are small internal cracks, then these will be repaired too.

 

Read more

Our reconditioning centres

We operate four reconditioning centres that are strategically located along major shipping routes: Singapore, Kruiningen (The Netherlands), Suzhou (China), Dubai. Each of the four centres carries a large inventory, so it can offer components on exchange in addition to reconditioning the customer’s own part. Both ways of working are available, it is entirely the customer’s choice.

Our reconditioning centres are the most modern ones within our industry. Welding and QS50K coating is typically performed by robots and machining is done on numerically controlled (NC) machines.

QuantiServ Reconditioning Centres
We operate four reconditioning centres globally.

This enables us to provide consistently high quality and short turn-around times at attractive prices.

 

Read more

QuantiServ Suzhou Workshop
The QuantiServ reconditioning workshop in Suzhou, China. The others are in Singapore, Dubai and Kruiningen (The Netherlands).

15’000 TEU Container Ship Intermediate Shaft In-situ Machining

Our colleagues from QuantiServ Shanghai have just completed an intermediate shaft repair assignment on a 15’000 TEU container ship.

While underway to a southern Chinese port, the almost new vessel had suffered a breakdown to one of its line shaft bearings. Running steel to steel as a consequence of the bearing failure, the intermediate shaft got severely damaged.

QuantiServ Shanghai got contacted while the vessel was on tow to one of Chinas largest shipyards in the greater Shanghai area.

Our experts immediately got to work and presented to the shipowner and shipyard a repair plan and schedule, before the vessel even reached the shipyard. The plan included the re-design of the line shaft bearing, the design and fabrication of special in-situ machining tools and the execution of the work in three shifts, around the clock. All stake holders agreed to the plan.

Once the tools had been fabricated, our technicians performed the following work on board the vessel, while alongside in the shipyard. Some of the tasks had to be carried out multiple times, for example laser alignment checks before, during and after machining.

  • Laser alignment checks and alignment calculation
  • Dimensional and hardness measurements, non-destructive crack testing
  • Removal of cracks, shaft journal area machining to under-size, then polishing
  • Shaft alignment adjustment
  • Bearing load jack-up tests

Our six technicians performed the work in two shifts, around the clock. The entire repair took just seven days to complete to the full satisfaction and appreciation of the shipowner, shipyard, classification society and shaft line bearing OEM.

 

Key data of the installation:

  • Intermediate shaft total length: ~ 39 m
  • Shaft diameter: 790 mm
  • Shaft journal length: 1’200 mm
  • Max continuous engine power transmitted through shaft: ~ 53’000 kW
Intermediate shaft in-situ machining
In-situ machining (cutting)
Measuring of the diameter
Measuring of the diameter
In-situ polishing
In-situ machine polishing

Line Boring Work on Large Hydraulic Forming Press

Last month, our colleagues from QuantiServ Shanghai completed an in-situ repair assignment on two large hydraulic forming presses. The two presses, that have a capacity of 2,000 tons each, are installed in a factory in Northern China. They are used to manufacture automobile chassis parts for BMW and Mercedes Benz, among others.

The situation on both presses was almost identical. Specifically, it was the gearbox sections at the upper ends of the press that were in need of repair. A total of six bearing housings (2 x 3 each) were found to be worn. Their diameters, concentricity and coaxiality were all out of tolerance.

Large hydraulic forming press
One of the two 2,000 ton hydraulic forming presses that we worked on

To bring the bearing housings back into specification, our in-situ specialists line bored them. Thereafter, they installed specially manufactured bushes. Non-destructive crack testing and multiple laser alignment checks prior, during and after the repair completed the work.

To minimize expensive down-time, the work was carried out around the clock, 24/7, to the full satisfaction of the customer.

Installing the boring bar
Installing the boring bar
Laser alignment check in progress
Laser alignment check in progress
During line boring
During line boring
Coaxiality calculation
Coaxiality calculation

Metal Stitching Repair of Two-stroke Engine Bedplates

This post introduces metal stitching as an attractive solution to repair cracks in two-stroke engine bed plates.

Background

The term “metal stiching” is most commonly associated with the repair of cast iron parts, as an alternative to welding, to which cast iron does not lend itself easily. Due to its brittle nature, cast iron tends to fail again rapidly after welding, unless the welding takes place at very elevated and uniform temperatures. These conditions are hard, if not impossible, to achieve in most workshops, let alone at site.

It is less commonly known that metal stitching is also an increasingly often used process for the repair of steel parts, where welding actually would be possible. There are good reasons for chosing stitching over welding, even in steel.

First and foremost, metal stitching is a cold process and thus does not lead to deformation or latent heat-induced stresses in the part being repaired. Post-repair (in-situ) machining to correct these deformations is therefore rarely required.

Second, as we have shown through independent labaratory testing, a metal stitched junction that has been made by a qualified operator using Lock-N-Stitch tools and stitching components, exhibits a tensile and fatigue strength that is equal to, or better, than that of a welded junction.

During the last few years, QuantiServ have gained extensive experience in applying the metal stitching process to crack repairs in two-stroke engine bedplates and columns. Two instructive cases are discussed below, both involving container ships with 96-bore engines.

On the first vessel, the stitching was carried out in stages, during successive port stays. On the second, the repair was carried out during a regularly scheduled dry docking in China.

Case 1: Bed Plate Metal Stitching During Successive Port Stays

In the course of a crank case inspection, a 800 mm long crack was found in the main engine bedplate on board a 15,500 TEU container vessel in 2019. Contacted by the ship owner, we carried out an assessment. It revealed that the crack would propagate quickly if the engine, a 14-cylinder, 96-bore one, would continue to operate at, or near, its nominal speed.

We proposed to the customer to carry out the repair while the ship remained in service. As the thirteen year old vessel was engaged in a “high-rate/less-time” trade, the customer of course jumped at the opportunity to get the crack repaired without any vessel off-hire. Following a review of the vessel’s trading pattern, we decided to carry out the repair during successive port stays during the vessel’s Northern European loop.

Our specialists commenced their work as soon as the vessel was alongside in port and did not stop anymore until the engine had to be restarted. They then rested during the short voyage to the next port, where they continued in the same manner.

While working, our specialists discovered that the crack in fact was about 300 mm longer than had previously been reported by the crew. This meant that the time in Europe was insufficient to repair the crack in its entirety.

Our specialists revisited the vessel a few months later, again in Europe, to repair the previously unreported section of the crack. All in all, it took seven port stays of a few hours each to repair the bedplate.

Attendance Voyage Number of port stays
First Antwerp – London 4
Second Bremerhaven – Antwerp 3

In total, we repaired on this bed plate over 800 mm of crack in steel plates with thickness ranging from 18 – 50 mm, without a single day of off-hire or otherwise interfering into the vessel schedule.

To repair this bed plate, metal stitching was chosen over welding because it has the following advantages:

  • The vessel stayed in operation throughout the repair. The stitching was done in stages during port stays, a few centimeters at a time. With welding, this would not have been possible. The vessel would have had to be taken out of operation for around three weeks.
  • Lower costs, compared to welding. A competitor proposed to carry out repair by welding in 20 days. We repaired it by stitching in 12 days. Less time spent means less costs.
  • For metal stitching, a hot work permit is not normally required. Such a permit would be very difficult to get in container terminals, meaning that welding would not have been possible from a safety point of view.
Crack runs from the girder side plate down into the oil sump
The crack runs from girder side plate down into the oil sump
Metal stitching repair in progress
Crack without the sealing compound that was temporarily applied
View of the crack without the sealing compound that was temporarily applied
The completed repair, prior to cleaning and painting
The completed repair, prior to cleaning and painting

Case 2: Bedplate Stitching During Dry Docking

The second case discussed here concerns an 8-year old, 13,000 TEU container vessel with a 12-cylinder, 96-bore main engine. The crack discovered on this engine was quite similar to the one described above.

Since the crack was discovered shortly before the vessel was scheduled to undergo a routine dry docking, it was decided to repair it during the docking period in China in 2020.

The crack extended over a length of 750 mm in steel plates with thickness ranging from 18 – 50 mm. Repairing it took our specialists eight days, working in single shifts.

Crack runs from girder side plate down to oil sump
The crack runs from the girder side plate down into the oil sump
Stitching of the crack in progress
Metal stitching of the crack in progress
The completed repair prior to repainting
The completed repair prior to repainting

The first two-stroke diesel engine that we have metal stitched has meanwhile accumulated 77,000 hours. We repaired a 600 mm long crack in the gear column (A-frame), in 2006. The repair is still in perfect condition today.

04 January 2021

Read more

The two repairs presented above were carried out using stitching components from the American company Lock-N-Stitch. We would like to stress that we have labaratory-tested other products available in the market and that we have found their strength to be insufficient for demanding applications like these.

Read more about metal stitching

Reconditioning of Fourteen 96-bore Cylinder Covers

In November 2017, our Reconditioning Centre in Shanghai carried out reconditioning of fourteen cylinder covers for a major European ship owner. These covers came from one of the world’s largest container ships, equipped with a 14-cylinder, 96-bore main engine.

All fourteen cylinder covers and all fourteen exhaust valves were reconditioned within a period of less than one month, while the vessel was undergoing steel work at a shipyard in Qingdao.

This was the third vessel out of a series of similar vessels for the same customer. QuantiServ carried out the reconditioning work for all these vessels.

Significant Reconditioning and Field Service Job in Shanghai

In September our Reconditioning Centre in Shanghai carried out a a major reconditioning and field service order for an Iranian-owned tanker that was docked in a Chinese shipyard. This example shoes well the breadth of QuantiServ’s offering.

The following components were reconditioned:

  • 8 piston rods
  • 7 piston crowns
  • 7 cylinder covers
  • 6 exhaust valves
  • 7 crosshead pins
  • plus a number of smaller, related components

We also sourced for the customer a couple of new crosshead and crankpin bearings while we re-babbitted others, such as for example guide shoes.

QuantiServ engineers also carried out the overhaul work on board, supervised the oil flushing and attended the seatrial after the docking. We also replaced the stern tube shaft seals and in-situ polished some of the crankpin journals.

All the work was completed in 32 days.

It’s All in a Month’s Work for QuantiServ’s In-situ Machining Crew!

On board various ships and oil rigs, in power plants and in factories: Far from being idle during the holiday season, during the month of July our in-situ specialists were maintaining and repairing our customers’ equipment in 26 different countries, across four continents. No other in-situ machining company has such global reach and completes more projects than QuantiServ. Wherever the location, whatever the damage – it’s all in a month’s work for us!

Explore the interactive map below and discover what services our in-situ engineers have been providing to our customers during the month of July 2017.