Metal Stitching Repair of Two-stroke Engine Bedplates

This post introduces metal stitching as an attractive solution to repair cracks in two-stroke engine bed plates.

Background

The term “metal stiching” is most commonly associated with the repair of cast iron parts, as an alternative to welding, to which cast iron does not lend itself easily. Due to its brittle nature, cast iron tends to fail again rapidly after welding, unless the welding takes place at very elevated and uniform temperatures. These conditions are hard, if not impossible, to achieve in most workshops, let alone at site.

It is less commonly known that metal stitching is also an increasingly often used process for the repair of steel parts, where welding actually would be possible. There are good reasons for chosing stitching over welding, even in steel.

First and foremost, metal stitching is a cold process and thus does not lead to deformation or latent heat-induced stresses in the part being repaired. Post-repair (in-situ) machining to correct these deformations is therefore rarely required.

Second, as we have shown through independent labaratory testing, a metal stitched junction that has been made by a qualified operator using Lock-N-Stitch tools and stitching components, exhibits a tensile and fatigue strength that is equal to, or better, than that of a welded junction.

During the last few years, QuantiServ have gained extensive experience in applying the metal stitching process to crack repairs in two-stroke engine bedplates and columns. Two instructive cases are discussed below, both involving container ships with 96-bore engines.

On the first vessel, the stitching was carried out in stages, during successive port stays. On the second, the repair was carried out during a regularly scheduled dry docking in China.

Case 1: Bed Plate Metal Stitching During Successive Port Stays

In the course of a crank case inspection, a 800 mm long crack was found in the main engine bedplate on board a 15,500 TEU container vessel in 2019.  Contacted by the ship owner, we carried out an assessment. It revealed that the crack would propagate quickly if the engine, a 14-cylinder, 96-bore one, would continue to operate at, or near, nominal speed.

We proposed to the customer to carry out the repair while the ship remained in service. As the thirteen year old vessel was engaged in a “high-rate/less-time” trade, the customer of course jumped at the opportunity to get the crack repaired without any vessel off-hire. Following a review of the vessel’s trading pattern, we decided to carry out the repair during successive port stays during the vessel’s Northern European loop.

Our specialists commenced their work as soon as the vessel was alongside in port and did not stop anymore until the engine had to be restarted. They then rested during the short voyage to the next port, where they continued in the same manner.

While working, our specialists discovered that the crack in fact was about 300 mm longer than had previously been reported by the crew. This meant that the time in Europe was insufficient to repair the crack in its entirety.

Our specialists revisited the vessel a few months later, again in Europe, to repair the previously unreported section of the crack. All in all, it took seven port stays of a few hours each to repair the bedplate.

Attendance Voyage Number of port stays
First Antwerp – London 4
Second Bremerhaven – Antwerp 3

In total, we repaired on this bed plate over 800 mm of crack in steel plates with thickness ranging from 18 – 50 mm, without a single day of off-hire or otherwise interfering into the vessel schedule.

To repair this bed plate, metal stitching was chosen over welding because it has the following advantages:

  • The vessel stayed in operation throughout the repair. The stitching was done in stages during port stays, a few centimeters at a time. With welding, this would not have been possible. The vessel would have had to be taken out of operation for around three weeks.
  • Lower costs, compared to welding. A competitor proposed to carry out repair by welding in 20 days. We repaired it by stitching in 12 days. Less time spent means less costs.
  • For metal stitching, a hot work permit is not normally required. Such a permit would be very difficult to get in container terminals, meaning that welding would not have been possible from a safety point of view.

Case 2: Bedplate Stitching During Dry Docking

The second case discussed here concerns an 8-year old, 13,000 TEU container vessel with a 12-cylinder, 96-bore main engine. The crack discovered on this engine was quite similar to the one described above.

Since the crack was discovered shortly before the vessel was scheduled to undergo a routine dry docking, it was decided to repair it during the docking period in China in 2020.

The crack extended over a length of 750 mm in steel plates with thickness ranging from 18 – 50 mm. Repairing it took our specialists eight days, working in single shifts.

The first two-stroke diesel engine that we have metal stitched has meanwhile accumulated 77,000 hours. We repaired a 600 mm long crack in the gear column (A-frame), in 2006. The repair is still in perfect condition today.

04 January 2021

The two repairs presented above were carried out using stitching components from the American company Lock-N-Stitch. We would like to stress that we have labaratory-tested other products available in the market and that we have found their strength to be insufficient for demanding applications like these.

Read more about metal stitching

 

Reconditioning of Fourteen 96-bore Cylinder Covers

In November 2017, our Reconditioning Centre in Shanghai carried out reconditioning of fourteen cylinder covers for a major European ship owner. These covers came from one of the world’s largest container ships, equipped with a 14-cylinder, 96-bore main engine.

All fourteen cylinder covers and all fourteen exhaust valves were reconditioned within a period of less than one month, while the vessel was undergoing steel work at a shipyard in Qingdao.

This was the third vessel out of a series of similar vessels for the same customer. QuantiServ carried out the reconditioning work for all these vessels.

Significant Reconditioning and Field Service Job in Shanghai

In September our Reconditioning Centre in Shanghai carried out a a major reconditioning and field service order for an Iranian-owned tanker that was docked in a Chinese shipyard. This example shoes well the breadth of QuantiServ’s offering.

The following components were reconditioned:

  • 8 piston rods
  • 7 piston crowns
  • 7 cylinder covers
  • 6 exhaust valves
  • 7 crosshead pins
  • plus a number of smaller, related components

We also sourced for the customer a couple of new crosshead and crankpin bearings while we re-babbitted others, such as for example guide shoes.

QuantiServ engineers also carried out the overhaul work on board, supervised the oil flushing and attended the seatrial after the docking. We also replaced the stern tube shaft seals and in-situ polished some of the crankpin journals.

All the work was completed in 32 days.

It’s All in a Month’s Work for QuantiServ’s In-situ Machining Crew!

On board various ships and oil rigs, in power plants and in factories: Far from being idle during the holiday season, during the month of July our in-situ specialists were maintaining and repairing our customers’ equipment in 26 different countries, across four continents. No other in-situ machining company has such global reach and completes more projects than QuantiServ. Wherever the location, whatever the damage – it’s all in a month’s work for us!

Explore the interactive map below and discover what services our in-situ engineers have been providing to our customers during the month of July 2017.